

SPIROJET

CANALI PERFORATI

Manuale di Progettazione Semplificata

PROGETTAZIONE

Progettare un impianto con i canali perforati SPIROJET™ per la diffusione dell'aria è molto semplice.

Se si desidera ottenere le **massime prestazioni** dell'impianto è necessario rispettare una serie di parametri chiave:

Altezza massima di installazione (in fase di riscaldamento) 8 m
 ΔT massimo di mandata aria (in fase di riscaldamento) +10 °C
 Temperatura minima estiva di mandata aria > 12 °C
 Velocità dell'aria in ingresso canale 5 m/s

Allontanandoci da tali valori ottimali, l'impianto è comunque in grado di funzionare, ma ci si allontana proporzionalmente dalle prestazioni massime.

Tuttavia, **il parametro più significativo da considerare è la PORTATA D'ARIA UNITARIA** (al metro lineare), che deve essere adeguata non solo al lancio dell'aria, ma soprattutto all'altezza di installazione del canale, con una tolleranza approssimativa del ± 30 % rispetto alla portata ottimale.

Aumentando la portata d'aria unitaria aumenta il rischio di correnti d'aria con una maggiore omogeneità delle temperature, mentre riducendo la portata d'aria unitaria si riduce la velocità dell'aria residua al suolo, quindi si ottiene un miglior comfort, ma si favorisce la stratificazione dell'aria calda durante l'inverno.

I valori di riferimento ottimali (± 30 %) per la scelta della portata d'aria unitaria sono riportati nell'allegata tabella di **SELEZIONE RAPIDA**.

Per quanto riguarda il dimensionamento delle riprese dell'aria in ambiente, si applicano le regole comuni utilizzate in tutti gli impianti di diffusione dell'aria, quindi è consigliabile avere le riprese dell'aria al suolo, opportunamente ripartite in ambiente.

Tuttavia, qualora non fosse possibile realizzare le riprese dell'aria al livello del suolo, ma a soffitto, sarebbe possibile utilizzare anche i **canali di ripresa SPIROJET**, dimensionati con una foratura specifica su misura per ogni impianto.

I canali collettori tradizionali, quando devono trasportare dell'aria fredda, devono necessariamente essere isolati termicamente al fine di evitare fenomeni di condensazione sulla superficie stessa del canale. In alternativa, si possono utilizzare i **canali collettori SPIROJET**, più estetici e funzionali che, grazie ad una perforazione anticondensa su misura per ogni impianto, ci permettono di evitare l'isolamento termico.

Per calcolare la quantità ottimale di canali diffusori SPIROJET necessari per un impianto, è sufficiente dividere la portata d'aria totale dell'impianto per la portata d'aria unitaria indicata nella tabella di SELEZIONE RAPIDA.

$$\mathbf{L}_{\text{tot}} = \mathbf{Q}_{\text{tot}} / \mathbf{Q}_{\text{ml}}$$

Ltot Lunghezza totale dei canali diffusori SPIROJET

Qtot **Portata aria totale** dell'impianto

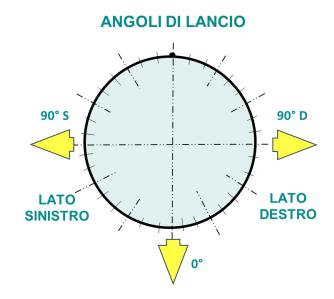
Q_{ml} **Portata aria unitaria** (al metro lineare)

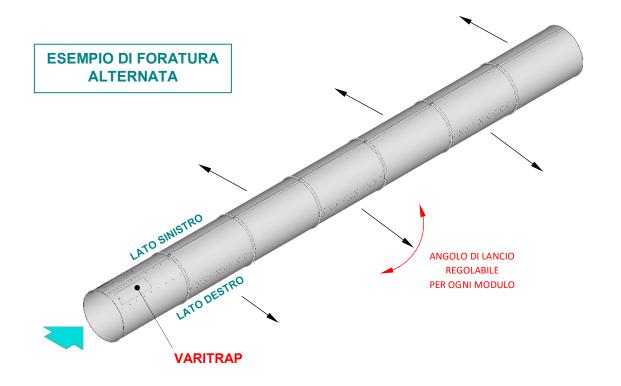
Infine, è molto importante tenere conto delle implicazioni legate alla scelta della velocità dell'aria in ingresso al canale. Come ben noto, i canali perforati SPIROJET, essendo privi di isolamento termico, perdono naturalmente calore lungo il loro percorso. Ciò significa che, in fase di riscaldamento, l'aria che fuoriesce dai fori situati alla fine del canale sarà meno calda rispetto a quella che esce dai fori all'inizio del percorso.

Un'altra caratteristica peculiare dei canali perforati, derivante dal noto fenomeno fisico del *recupero della pressione* dinamica, fa sì che la pressione statica alla fine del canale sia sempre maggiore rispetto a quella rilevata all'inizio del canale.

Dal momento che la pressione statica determina la velocità di uscita dell'aria dai fori, ciò implica che i primi fori emetteranno meno aria, più calda con minor pressione e minor induzione, mentre gli ultimi fori emetteranno più aria, meno calda, con maggior pressione e maggior induzione.

Di conseguenza, per garantire una distribuzione equa della potenza termica erogata lungo ogni metro di canale (definito come modulo), è importante rispettare la velocità dell'aria di 5 m/s all'ingresso del canale.


Incrementando la velocità dell'aria in ingresso del canale, si otterrà che nella zona sottostante la parte terminale del canale si incrementeranno sia le correnti d'aria al suolo che una maggior erogazione della potenza termica.


La perforazione dei canali **SPIROJET** è calcolata automaticamente su misura per ciascun impianto, utilizzando un modello matematico basato su una importante Banca Dati costituita dai dati raccolti da SINTRA in oltre 30 anni di ricerca continua.

Al momento dell'ordine, il committente può scegliere l'angolo di lancio desiderato facendo riferimento allo schema ANGOLI DI LANCIO riportato qui a lato.

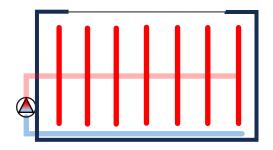

I canali **SPIROJET** sono di solito **perforati su un solo lato** al fine di migliorare l'efficienza di induzione e consentire la regolazione dell'angolo di lancio dell'aria anche dopo l'installazione.

Se un canale **SPIROJET** deve lanciare l'aria sia a destra che a sinistra, i moduli con foratura destra e sinistra devono essere alternati per mantenere il massimo rendimento di induzione del canale.

ESEMPIO DI PROGETTO

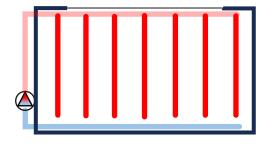
Nota: Lo sviluppo lineare di ogni canale diffusore SPIROJET può fermarsi ad una distanza dal muro di fondo corrispondente all'altezza di installazione del canale con una tolleranza di ± 50 %.

SOLUZIONE TECNICA OTTIMALE


Applicando i valori **OTTIMALI** indicati nella tabella di SELEZIONE RAPIDA si possono quindi ottenere le massime prestazioni nel controllo dell'omogeneità delle temperature sia verticali che orizzontali, senza correnti d'aria.

Portata aria unitaria ottimale per altezza 5 m
150 m³/hm

Lunghezza totale **ottimale** dei canali (33.600/150) **224** m (± 10 %)


Per ottenere quindi le massime prestazioni sia energetiche che di comfort, basta ripartire omogeneamente in ambiente 224 m di canale **SPIROJET**, ovvero 224 (± 10 %) moduli **SPIROJET** lunghi un metro circa.

All'inizio di ogni canale diffusore è possibile applicare delle finestre di scarico **VARITRAP®** al fine di poter regolare manualmente al meglio ed in qualsiasi momento la velocità dell'aria residua al suolo.

ESEMPIO 1

Quantità di canali diffusori SPIROJET	14
Lunghezza di ogni canale (224/14)	16 m
Portata aria di ogni canale (33.600/14)	2.400 m ³ /h
Velocità dell'aria in ingresso canale	< 5 m/s
Diametro di ogni canale (vedi tabella)	ø 450 mm

ESEMPIO 2

Quantità di canali diffusori SPIROJET	7
Lunghezza di ogni canale (<mark>224</mark> /7)	32 m
Portata aria di ogni canale (33.600/7)	4.800 m ³ /h
Velocità dell'aria in ingresso canale	< 5 m/s
Diametro di ogni canale (vedi tabella)	ø 600 mm

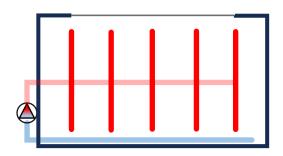
ESEMPIO 3

Quantità di canali diffusori SPIROJET	4
Lunghezza di ogni canale (224/4)	56 m
Portata aria di ogni canale (33.600/4)	8.400 m ³ /h
Velocità dell'aria in ingresso canale	< 5 m/s
Diametro di ogni canale (vedi tabella)	ø 800 mm

SOLUZIONE TECNICA ECONOMICA

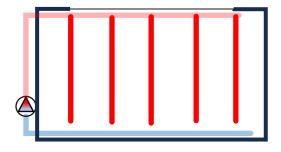
Applicando i valori di **portata aria massima** al metro lineare, indicati nella tabella di SELEZIONE RAPIDA (max + 30 %), si può ridurre sensibilmente la lunghezza totale dei canali, ottenendo una soluzione più economica e con un livello prestazionale ancora accettabile per applicazioni non eccessivamente esigenti:

Portata aria unitaria massima per altezza 5 m


195 m³/hm

Lunghezza totale **minima** dei canali (33.600/195)

173 m (± 10%)


Un'ulteriore riduzione della lunghezza totale dei canali corrisponderebbe ad un eccesso di portata d'aria al metro lineare che aumenterebbe proporzionalmente il rischio di correnti d'aria.

All'inizio di ogni canale diffusore è possibile applicare delle finestre di scarico **VARITRAP®** al fine di poter regolare manualmente al meglio ed in qualsiasi momento la velocità dell'aria residua al suolo.

ESEMPIO 1

Quantità di canali diffusori SPIROJET	10
Lunghezza di ogni canale (173/10)	17 m
Portata aria di ogni canale (33.600/10)	3.360 m ³ /h
Velocità dell'aria in ingresso canale	< 5 m/s
Diametro di ogni canale (vedi tabella)	ø 500 mm

ESEMPIO 2

Quantità di canali diffusori SPIROJET	5
Lunghezza di ogni canale (173/5)	34 m
Portata aria di ogni canale (33.600/5)	6.720 m ³ /h
Velocità dell'aria in ingresso canale	< 5 m/s
Diametro di ogni canale (vedi tabella)	ø 700 mm

ESEMPIO 3

Quantità di canali diffusori SPIROJET	3
Lunghezza di ogni canale (173/3)	60 m
Portata aria di ogni canale (33.600/3)	11.200 m ³ /h
Velocità dell'aria in ingresso canale	< 5 m/s
Diametro di ogni canale (vedi tabella)	ø 900 mm

SOLUZIONE TECNICA ECONOMICA CON SISTEMA VARITRAP®

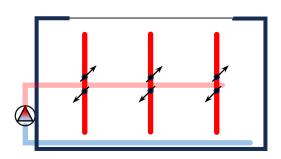
Se le prestazioni richieste all'impianto non sono quelle più elevate, applicando i valori di **portata aria massima** al metro lineare indicati nella tabella di SELEZIONE RAPIDA (max + 30 %), otterremo una soluzione più economica, riducendo al minimo la lunghezza totale dei canali:

Portata aria unitaria massima per altezza 5 m

195 m³/hm

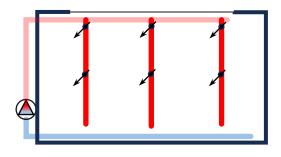
Lunghezza totale **minima** dei canali (33.600/195)

173 m (± 10%)

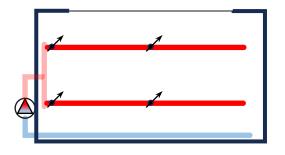

> Massima portata scaricabile per ogni canale mediante VARITRAP®

50 %

Massima portata scaricabile per ogni singolo VARITRAP®


 $< 3.000 \text{ m}^3/\text{h}$

Un'ulteriore riduzione della lunghezza totale dei canali corrisponderebbe ad un eccesso di portata d'aria al metro lineare che aumenterebbe proporzionalmente il rischio di correnti d'aria.


ESEMPIO 1

Quantità di canali diffusori SPIROJET	6
Portata aria di ogni canale (33.600/6)	5.600 m ³ /h
Velocità dell'aria in ingresso canale	< 5 m/s
Diametro di ogni canale (vedi tabella)	ø 560 mm
Lunghezza di ogni canale	17 m
Portata aria diffusa da ogni canale (195x17)	3.300 m ³ /h
Portata di scarico VARITRAP® (5.600-3.300)	2.300 m ³ /h

ESEMPIO 2

Quantità di canali diffusori SPIROJET	3
Portata aria di ogni canale (33.600/3)	11.200 m ³ /h
Velocità dell'aria in ingresso canale	< 5 m/s
Diametro di ogni canale (vedi tabella)	ø 900 mm
Lunghezza di ogni canale	34 m
Portata aria diffusa da ogni canale (195x34)	6.630 m ³ /h
Portata di scarico VARITRAP® (11.200-6.630)	4.570 m ³ /h

ESEMPIO 3

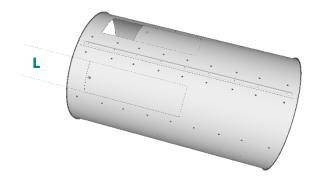
Quantità di canali diffusori SPIROJET	2
Portata aria di ogni canale (33.600/ <mark>2</mark>)	16.800 m³/h
Velocità dell'aria in ingresso canale	< 5 m/s
Diametro di ogni canale (vedi tabella)	ø 1.100 mm
Lunghezza di ogni canale	60 m
Portata aria diffusa da ogni canale (195x60)	11.700 m ³ /h
Portata di scarico VARITRAP® (16.800-11.700)	5.100 m ³ /h

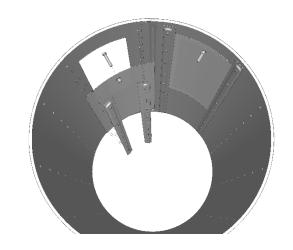
Il regolatore brevettato VARITRAP®

Il sistema brevettato **VARITRAP®**, identificato con il numero di brevetto EP224183, costituisce un'importante innovazione nel **controllo della distribuzione dell'aria** tramite canali perforati.

Questa tecnologia permette di "scaricare" una porzione dell'aria in ingresso direttamente nella parte superiore del canale, consentendo una precisa regolazione della quantità di aria distribuita attraverso i fori. Regolando la quantità di aria scaricata tramite **VARITRAP®**, è possibile gestire sia la pressione che la portata e la velocità dell'aria che fuoriesce dai fori.

Questa regolazione permette di calibrare le velocità residue dell'aria al suolo nella zona interessata, contribuendo significativamente al comfort degli occupanti.


Il dispositivo **VARITRAP®** è costituito da uno sportello calandrato che si integra perfettamente con la struttura del canale, supportato da guide laterali interne. Per regolare l'apertura dello sportello, è sufficiente allentare le viti di fissaggio delle guide, regolare l'apertura desiderata e quindi stringere nuovamente le viti di fissaggio.


L'aria scaricata nella parte superiore del canale tramite **VARITRAP®** viene prontamente recuperata attraverso l'induzione naturale del canale stesso, evitando sprechi energetici.

Inoltre, l'utilizzo di **VARITRAP®** può ridurre il numero di canali necessari per la distribuzione dell'aria, come illustrato nell'esempio di progettazione sopra descritto. Questa soluzione tecnica porta a un significativo risparmio sui costi complessivi dell'impianto, senza compromettere eccessivamente le prestazioni; quindi, con un livello di compromesso accettabile per la maggior parte delle applicazioni non eccessivamente esigenti.

È importante notare che la quantità massima di aria scaricata **non deve mai superare il 50** % della portata d'aria in ingresso al canale, al fine di garantire un funzionamento ottimale dell'impianto. I dispositivi **VARITRAP**® vengono installati su moduli di canale non diffusori, dotati esclusivamente di foratura anticondensa.

Grazie alla sua discreta forma e alla perfetta integrazione con la struttura del canale, il **VARITRAP®** risulta praticamente invisibile agli occupanti dell'edificio, garantendo una soluzione esteticamente gradevole e funzionale.

MODELLO	LARGHEZZA	PORTATA	DIAMETRO		
	L	100 Pa	200 Pa	400 Pa	min / max
VARITRAP®	mm	m ³ /h (*)	m³/h (*)	m ³ /h (*)	mm
V 100	100	2.600	3.800	5.300	200 / 400
V 150	150	3.800	5.600	8.000	450 / 700
V 200	200	5.400	7.400	10.500	710 / 1.150
V 250	250	6.600	9.200	13.500	1.200 / 1.700

SELEZIONE RAPIDA DEI CANALI PERFORATI

						Po	rtata a	ria (m³/	/h)						
a	2	NR 30		SPIR <mark>O</mark> JET	6	7	o	0	40	44	42	40	4.4	45	PESO
Ø mm	2 m/sec	3 m/sec	4 m/sec	5 m/sec	6 m/sec	m/sec	8 m/sec	9 m/sec	10 m/sec	11 m/sec	12 m/sec	13 m/sec	14 m/sec	15 m/sec	kg/m
160	145	217	289	362	434	506	579	651	723	796	868	940	1.013	1.085	3,3
200	226	339	452	565	678	791	904	1.017	1.130	1.243	1.356	1.470	1.583	1.696	4,1
250	353	530	707	883	1.060	1.236	1.413	1.590	1.766	1.943	2.120	2.296	2.473	2.649	5,1
280	443	665	886	1.108	1.329	1.551	1.772	1.994	2.216	2.437	2.659	2.880	3.102	3.323	5,7
300	509	763	1.017	1.272	1.526	1.780	2.035	2.289	2.543	2.798	3.052	3.306	3.561	3.815	6,1
315	561	841	1.122	1.402	1.682	1.963	2.243	2.524	2.804	3.085	3.365	3.645	3.926	4.206	6,4
350	692	1.039	1.385	1.731	2.077	2.423	2.769	3.116	3.462	3.808	4.154	4.500	4.847	5.193	7,1
355	712	1.068	1.425	1.781	2.137	2.493	2.849	3.205	3.561	3.918	4.274	4.630	4.986	5.342	7,2
400	904	1.356	1.809	2.261	2.713	3.165	3.617	4.069	4.522	4.974	5.426	5.878	6.330	6.782	8,2
450	1.145	1.717	2.289	2.861	3.434	4.006	4.578	5.150	5.723	6.295	6.867	7.439	8.012	8.584	9,2
500	1.413	2.120	2.826	3.533	4.239	4.946	5.652	6.359	7.065	7.772	8.478	9.185	9.891	10.598	10,2
550	1.710	2.565	3.419	4.274	5.129	5.984	6.839	7.694	8.549	9.404	10.258	11.113	11.968	12.823	11,2
560	1.772	2.659	3.545	4.431	5.317	6.204	7.090	7.976	8.862	9.749	10.635	11.521	12.407	13.294	11,4
600	2.035	3.052	4.069	5.087	6.104	7.122	8.139	9.156	10.174	11.191	12.208	13.226	14.243	15.260	12,2
630	2.243	3.365	4.487	5.608	6.730	7.851	8.973	10.095	11.216	12.338	13.460	14.581	15.703	16.825	12,9
650	2.388	3.582	4.776	5.970	7.164	8.358	9.552	10.746	11.940	13.134	14.328	15.522	16.716	17.910	13,3
700	2.769	4.154	5.539	6.924	8.308	9.693	11.078	12.463	13.847	15.232	16.617	18.002	19.386	20.771	14,3
710	2.849	4.274	5.698	7.123	8.548	9.972	11.397	12.821	14.246	15.670	17.095	18.520	19.944	21.369	14,5
750	3.179	4.769	6.359	7.948	9.538	11.127	12.717	14.307	15.896	17.486	19.076	20.665	22.255	23.844	15,3
800	3.617	5.426	7.235	9.043	10.852	12.660	14.469	16.278	18.086	19.895	21.704	23.512	25.321	27.130	16,3
850	4.084	6.125	8.167	10.209	12.251	14.292	16.334	18.376	20.418	22.460	24.501	26.543	28.585	30.627	17,3
900	4.578	6.867	9.156	11.445	13.734	16.023	18.312	20.602	22.891	25.180	27.469	29.758	32.047	34.336	22,6
950	5.101	7.651	10.202	12.752	15.303	17.853	20.404	22.954	25.505	28.055	30.606	33.156	35.707	38.257	23,9
1.000	5.652	8.478	11.304	14.130	16.956	19.782	22.608	25.434	28.260	31.086	33.912	36.738	39.564	42.390	25,1
1.050	6.231	9.347	12.463	15.578	18.694	21.810	24.925	28.041	31.157	34.272	37.388	40.504	43.619	46.735	26,4
1.100	6.839	10.258	13.678	17.097	20.517	23.936	27.356	30.775	34.195	37.614	41.034	44.453	47.872	51.292	27,6
1.150	7.475	11.212	14.950	18.687	22.424	26.162	29.899	33.636	37.374	41.111	44.849	48.586	52.323	56.061	28,9
1.200	8.139	12.208	16.278	20.347	24.417	28.486	32.556	36.625	40.694	44.764	48.833	52.903	56.972	61.042	37,7
1.250	8.831	13.247	17.663	22.078	26.494	30.909	35.325	39.741	44.156	48.572	52.988	57.403	61.819	66.234	39,3
1.300	9.552	14.328	19.104	23.880	28.656	33.432	38.208	42.983	47.759	52.535	57.311	62.087	66.863	71.639	40,8
1.350	10.301	15.451	20.602	25.752	30.902	36.053	41.203	46.353	51.504	56.654	61.805	66.955	72.105	77.256	42,4
1.400	11.078	16.617	22.156	27.695	33.234	38.773	44.312	49.851	55.390	60.929	66.468	72.006	77.545	83.084	44,0
1.450	11.883	17.825	23.767	29.708	35.650	41.592	47.533	53.475	59.417	65.358	71.300	77.242	83.183	89.125	54,6
1.500	12.717	19.076	25.434	31.793	38.151	44.510	50.868	57.227	63.585	69.944	76.302	82.661	89.019	95.378	56,5
1.550	13.579	20.368	27.158	33.947	40.737	47.526	54.316	61.105	67.895	74.684	81.474	88.263	95.053	101.842	58,4
1.600	14.469	21.704	28.938	36.173	43.407	50.642	57.876	65.111	72.346	79.580	86.815	94.049	101.284	108.518	60,3
1.650	15.388	23.081	30.775	38.469	46.163	53.856	61.550	69.244	76.938	84.632	92.325		107.713		62,2
1.700	16.334	24.501	32.669	40.836	49.003	57.170	65.337	73.504	81.671	89.839	98.006		114.340		64,1
1.800	18.312	27.469	36.625	45.781	54.937	64.094	73.250	82.406	91.562	100.719		119.031	·····	137.344	67,8
1.900	20.404	30.606	40.807	51.009	61.211	71.413	81.615	91.817	102.019	112.220		132.624		153.028	71,6
2.000	22.608	33.912	45.216	56.520	67.824	79.128	90.432	101.736	113.040	124.344		146.952		169.560	88
2.500	35.325	52.988	70.650	88.313	105.975		141.300			194.288			247.275		110
3.000	50.868	76.302					203.472			279.774			356.076		132

SELEZIONE DELLE PORTATE UNITARIE

◆ ALTEZZA D'INSTALLAZIONE			2,5	3,0	3,5	4,0	5,0	6	7	9
◆ PRESSIONE STATICA MINIMA *		Pa	100	105	110	120	140	150	180	200
	min 30%	m ³ /hm	28	46	63	77	105	133	154	175
◆ PORTATA ARIA UNITARIA * (al metro lineare)	Ottimale *	m ³ /hm	40	65	90	110	150	190	220	250
(armetro inteate)	max. + 30%	m ³ /hm	52	85	117	143	195	247	286	325

SINTRA SRL SOCIETÀ BENEFIT

STABILIMENTO-LABORATORIO Corso Europa, 24 28010 Fontaneto d'Agogna (NO)

EXPERTISE & TECHNOLOGY CENTER Via Novara, 35, Area Industriale SS229 28019 Suno (NO)

Tel.: +39 0322 86 36 01 info@sintra-mixind.com

